

Home Search Collections Journals About Contact us My IOPscience

Antiferromagnetic properties in RFe₂Ge₂ (R = Tb, Dy, Ho)

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys.: Condens. Matter 9 6781

(http://iopscience.iop.org/0953-8984/9/32/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.207 The article was downloaded on 14/05/2010 at 09:19

Please note that terms and conditions apply.

Antiferromagnetic properties in RFe_2Ge_2 (R = Tb, Dy, Ho)

A Szytuła†#, S Baran†, J Leciejewicz‡, B Penc†, N Stüsser§, Yon fan Ding§, A Zygmunt and J Żukrowski¶

† Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Kraków, Poland

‡ Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-169 Warszawa, Poland

§ Berlin Neutron Scattering Centre, Hahn-Meitner Institute, Berlin-Wannsee, Germany

|| W Trzebiatowski Institute of Low Temperature and Structure Research, Okólna 2, 50-950 Wrocław, Poland

¶ Department of Solid State Physics, University of Mining and Metallurgy, Al Mickiewicza 30, 30-059 Kraków, Poland

Received 19 May 1997

Abstract. X-ray and neutron diffraction measurements confirm that RFe₂Ge₂ (R = Tb, Dy and Ho) compounds show the tetragonal ThCr₂Si₂ type of crystal structure. Magnetization and magnetic susceptibility data indicate antiferromagnetic behaviour below the Néel temperatures at 8.5 K in TbFe₂Ge₂ and 3.35 K in DyFe₂Ge₂. A metamagnetic transition at $H_c = 11$ kOe and T = 4.2 K has been detected in TbFe₂Ge₂. The other two compounds give at 4.2 K magnetization curves characteristic for paramagnetic materials up to H = 50 kOe. The magnitudes of magnetic moments at H = 50 kOe are smaller than the free ion values for all three compounds. TbFe₂Ge₂ and DyFe₂Ge₂ exhibit at 1.5 K modulated antiferromagnetic order described by two component wavevectors $k = |k_x, 0, k_z|$. The magnetic moments are localized on the lanthanide ions and amount at 1.5 K to 7.68(11) and 7.3(3) μ_B in TbFe₂Ge₂ and DyFe₂Ge₂ respectively. Diffuse magnetic peaks observed at 1.5 K in the neutron diffraction pattern of HoFe₂Ge₂ indicate that a long-range antiferromagnetic order starts to set up at this temperature.

1. Introduction

Ternary lanthanide–iron–germanium (or silicon) phases with 1:2:2 stoichiometry crystallize in the tetragonal ThCr₂Si₂-type structure [1] and show complex magnetic ordering schemes at low temperatures [2–7]. Magnetization measurements carried out for TbFe₂Ge₂ and DyFe₂Ge₂ have revealed that both are antiferromagnetic at low temperatures [8,9]. No magnetization data are available for HoFe₂Ge₂. Neutron diffraction results reported for TbFe₂Ge₂ [10] confirmed the existence of magnetic ordering at low temperatures; however, the magnetic structure has not been solved.

Continuing our studies on the magnetic properties of RFe_2X_2 (R = lanthanide element, X = Si, Ge) phases, we present in this paper the results of neutron diffraction experiments performed on polycrystalline samples of $TbFe_2Ge_2$, $DyFe_2Ge_2$ and $HoFe_2Ge_2$ supplemented by new data obtained in the course of magnetization measurements.

[#] Author for correspondence: E-mail address, szytula@if.uj.edu.pl

2. Experimental details

The samples were obtained by arc melting of the constituent elements taken in the stoichiometric ratio 1:2:2. The purity was 3N (lanthanide and iron) and 5N (germanium). The melting was performed in purified argon atmosphere. The samples were afterwards annealed at 800 °C for 100 h. X-ray patterns (Fe K α radiation) showed that all were single phases with the tetragonal ThCr₂Si₂-type structure.

Magnetization and magnetic susceptibility measurements were performed in the temperature range 2 to 300 K using a vibrating sample magnetometer and SOUID magnetometer. In the latter experiment the maximum external magnetic field strength was 50 kOe.

Neutron diffraction measurements were carried out in the temperature range from 1.5 to 15.2 K on the E6 instrument at the BER II reactor (Hahn-Meitner Institute, Berlin) with the incident neutron wavelength of 2.422 Å. The data were processed by the Rietveld method using the FULLPROFF program [11] with neutron scattering lengths taken from [12] and the R^{3+} form factors adopted following [13].

The ⁵⁷Fe Mössbauer effect measurements were performed in transmission geometry using a constant-acceleration-type spectrometer with ⁵⁷Co source in a Cr matrix. The lowtemperature measurements at 80 and 4.2 K were made using a 'top-loading'-type cryostat.

3. Results

3.1. Crystal structure

Neutron diffractograms of all title compounds recorded above their Néel points contain reflections obeying the rule h + k + l even which is characteristic for the ThCr₂Si₂-type structure (space group I4/mmm) [14]. The atoms are located in the following positions:

- (i) R atoms in 2(a) 0, 0, 0;
- (ii) Fe atoms in 4(d) 0, $\frac{1}{2}$, $\frac{1}{4}$; $\frac{1}{2}$, 0, $\frac{1}{4}$; (iii) Ge atoms in 4(e) 0, 0, *z*; 0, 0, *z*;
- (iv) body centring translation.

The free z parameter for the Ge atom was refined and is listed in table 1, which contains also the lattice parameters determined at temperatures a few degrees above the respective Néel points.

Table 1. Crystal structure parameters.

	$TbFe_2Ge_2$ $T = 15.2 K$	$DyFe_2Ge_2$ $T = 8 K$	$HoFe_2Ge_2$ $T = 6 K$		
a (Å)	3.9705(14)	3.929(6)	3.9278(14)		
c (Å)	10.3733(35)	10.230(24)	10.2755(53)		
c/a	0.3828(2)	0.3826(26)	00.3807(4)		
V (Å ³)	163.53(17)	158.57(82)	159.18(29)		
z	0.3826(9)	0.3766(30)	0.3840(10)		
R_{Bragg} (%)	5.4	6.7	5.5		
$R_{prof.}$ (%)	5.6	5.6	5.8		

Figure 1. Magnetization curves for TbFe₂Ge₂, DyFe₂Ge₂ and HoFe₂Ge₂ obtained at low temperatures.

3.2. Magnetic data

Magnetization curves recorded at low temperatures in the presence of magnetic fields from 50 to 200 Oe (see figure 1) indicate the transition to the paramagnetic state at 8.5 K in TbFe₂Ge₂ and 3.35 K in DyFe₂Ge₂, while HoFe₂Ge₂ remains paramagnetic at 2 K. Figure 2 illustrates how the magnetization curves recorded at 4.2 K behave as the magnetic field changes from 0 to 50 kOe. The curve obtained for TbFe₂Ge₂ indicates the presence of a critical field $H_c = 11$ kOe connected most probably with a metamagnetic transition. The two remaining curves are characteristic of paramagnetic materials. At H = 50 kOe and T = 4.2 K the magnetic moments localized on the lanthanide ions amount to 5.3 μ_B for TbFe₂Ge₂ and 6.3 μ_B for DyFe₂Ge₂ and HoFe₂Ge₂ i.e. they are much smaller than the respective free ion values.

3.3. Magnetic structures

Figure 3 shows the neutron diffraction pattern in TbFe₂Ge₂ recorded at the temperature of 1.5 K and the corresponding diagram showing the difference between observed intensities and those calculated for this assumed structure. The intensities of peaks of magnetic origin were calculated for this assumed structure. The modulated magnetic order is described by the propagation vector $\mathbf{k} = |0.1536(4), 0, 0.4358(20)|$. The magnetic structure of TbFe₂Ge₂ is thus represented by a static linear spin wave displayed schematically in figure 4 with magnetic moment of 7.68(11) μ_B at 1.5 K localized on the Tb³⁺ ion and parallel to the *c*-axis. No localized magnetic moment on the Fe ion could be detected within the accuracy of a powder neutron diffraction experiment, in agreement with the Mössbauer spectroscopy results shown below. Table 2 lists the observed and calculated magnetic intensities.

The variation of satellite peak 000^{\pm} intensity with temperature displayed in figure 5 shows that TbFe₂Ge₂ does not undergo any magnetic phase transition between 1.5 and

Figure 2. Magnetization curves at 4.2 K as a function of the applied external magnetic field strength.

Figure 3. The neutron diffraction pattern of TbFe₂Ge₂ at 1.5 K and the difference pattern.

8.5 K. The latter temperature is the Néel point of TbFe₂Ge₂ (see the inset of figure 5).

The reflections due to magnetic order observed in the neutron diffraction pattern of $DyFe_2Ge_2$ recorded at 1.5 K (see figure 6) were indexed also for a modulated structure described by the wavevector k = |0.209(1), 0, 0.421(4)| with a magnetic moment of 7.3(3) μ_B at 1.5 K localized on the Dy^{3+} ion aligned with the *c*-axis. The comparison of observed and calculated magnetic intensities is given in table 3.

Figure 4. A schematic representation of the magnetic structure of TbFe₂Ge₂.

Table 2. Bragg angles and integrated magnetic intensities for TbFe₂Ge₂.

hkl	2θ	I_{calc}	Iobs
000^{\pm}	8.0	4086	3994
002^{-}	21.7	73	49
101^{-}	31.0	534	698
002^{+}	33.6	12	24
101^{-}	36.0	290	375
011^{-}	36.8	754	868
011^{+}	41.2	476	544
101^{+}	42.0	287	369
101^{+}	46.0	198	203
103^{-}	46.6	101	101
110^{-}	47.6	442	366
004	49.5	3	1
013-	51.0	200	128
112^{-}	52.2	304	168
103	55.0	95	77
110^{+}	56.0	310	294
103^{+}	57.2	44	47
112^{-}	58.9	186	182
112^{+}	60.0	232	216
013^{+}	61.0	96	70
103^{+}	64.6	40	51

Neutron diffraction patterns of $HoFe_2Ge_2$ recorded at 1.5 K and at a number of temperatures above do not show coherent magnetic reflections (see figure 7). Instead, diffuse scattering is observed near the angles at which magnetic reflections are present in $TbFe_2Ge_2$ and $DyFe_2Ge_2$. The shape of this diffuse peak suggests that long-range antiferromagnetic order in $HoFe_2Ge_2$ starts to set up at 1.5 K.

Figure 5. The neutron diffraction patterns of TbFe₂Ge₂ taken at a number of temperatures between 1.6 and 15.2 K. The inset shows how the integrated intensity of the satellite peak 000^{\pm} varies with temperature, yielding the Néel point at 8.5 K.

Figure 6. The neutron diffraction pattern of $DyFe_2Ge_2$ at 1.5 K and the difference pattern between experiment and calculations.

3.4. Results deduced from ⁵⁷Fe Mössbauer spectra

The ⁵⁷Fe Mössbauer absorption spectra of TbFe₂Ge₂ recorded at room, liquid nitrogen and liquid helium temperatures have the form of non-resolved quadrupole doublets (see

hkl	2θ	Icalc	Iobs		
000^{\pm}	9.1	1094	1016		
002^{-}	22.1	34	128		
101^{-}	28.5	179	293		
002^{+}	33.1	7	4		
101^{-}	33.4	98	84		
011^{-}	36.6	236	246		
011^{+}	40.5	220	215		
101^{+}	43.4	90	215		
103^{-}	44.5	35	99		
110^{-}	45.3	172	294		
101^{+}	47.0	69	77		
004^{-}	49.1	0	5		
112^{-}	50.1	122	132		
013-	50.5	76	66		
103^{-}	54.5	17	18		

Table 3. Bragg angles and integrated magnetic intensities for $DyFe_2Ge_2$.

Figure 7. Neutron diffraction patterns of $HoFe_2Ge_2$ recorded at temperatures between 1.5 and 6 K.

figure 8). The recorded spectra show that the iron atom does not carry any magnetic moment. The values of the isomer shift and the quadrupole splitting change only slightly with the temperature, in accordance with the results published previously [15]. The liquid helium temperature spectrum does not indicate the presence of any magnetic hyperfine field caused by the magnetic moment localized on the Tb^{3+} ion or by electron spin polarization in the material.

Figure 8. ⁵⁷Fe Mössbauer spectra of TbFe₂Ge₂ recorded at T = 4.2, 80 and 300 K.

4. Comment

The modulated antiferromagnetic structures observed in TbFe₂Ge₂ and DyFe₂Ge₂ imply that the dominant magnetic interactions responsible for their stability may be discussed in terms of the RKKY model.

Although the RFe_2X_2 silicides and germanides crystallize in the same tetragonal ThCr₂Si₂ structure type, the germanides show larger magnitudes of *a* and *c* lattice parameters and consequently longer R–R interatomic distances in the (001) plane and along the tetragonal axis. If one connects these experimental observations with the Néel temperatures which are smaller in the germanides (see table 4) the conclusion may be drawn that the exchange interactions operating in the germanides are weaker than those in the silicides.

Since the components of the propagation vectors determined for the RFe_2Ge_2 and RFe_2Si_2 compounds are different (see table 4), one may conclude that this effect is also brought about by the sizes of Ge and Si atoms, which affect the interatomic distances in the crystals.

It is known that the orientation of the magnetic moment with respect to the tetragonal axis is connected with the sign of the B_2^0 coefficient in the crystal electric field Hamiltonian [16]. This coefficient was found to be negative for RFe₂Si₂ (R = Tb, Ho) compounds [4–6] and was correlated with the observation that the magnetic moments in these compounds are

Table 4. A comparison of the Néel temperatures T_N , the components of the propagation vector (k_x, k_y, k_z) and values of ordered magnetic moments μ observed in RFe₂X₂ silicides (at 4.2 K) and germanides (at 1.5 K).

	Silicides					Germanides						
R	$\overline{T_N}$ (K)	k _x	k_y	k _z	$\mu (\mu_B)$	Ref.	$\overline{T_N}$ (K)	k_x	k_y	k _z	$\mu \; (\mu_B)$	Ref.
Tb Dy	10.5 3.8	0.3226 0.335	0 0	0.1708 0.136	7.9(1) 7.52(5)	[5] [4]	8.5 3.35	0.1536 0.209	0 0	0.4358 0.421	7.68(11) 7.3(3)	This work This work
Ho	2.3	0.328	0	0.152	7.4(3)	[6] <	<1.5					This work

aligned along the tetragonal axis. Since the orientation of magnetic moment in $TbFe_2Ge_2$ and $DyFe_2Ge_2$ observed in this experiment is the same as that in the RFe_2Si_2 compounds one may predict that the B_2^0 coefficient is most probably also negative.

Acknowledgment

Kind hospitality and financial support granted to three of us (SB, JL and AS) by the Hahn-Meitner Institute in Berlin is gratefully acknowledged.

References

- [1] Rossi D, Marazza R and Ferro R 1978 J. Less-Common Met. 58 203
- [2] Pinto H and Shaked H 1973 Phys. Rev. B 7 326
- [3] Szytuła A, Bażela W and Leciejewicz J 1983 Solid State Commun. 48 1053
- [4] Leciejewicz J and Szytuła A 1985 Solid State Commun. 56 1051
- [5] Bażela W, Leciejewicz J, Ptasiewicz-Bąk H and Szytuła A 1988 J. Magn. Magn. Mater. 72 85
- [6] Bourée-Vigneron F, Pinot M, Gołąb M, Szytuła A and Oleś A 1990 J. Magn. Magn. Mater. 86 383
- [7] Szytuła A, Oleś A and Perrin M 1990 J. Magn. Magn. Mater. 86 377
- [8] Malik S K, Sankar S G, Rao V U S and Obermyer R 1976 AIP Conf. Proc. 34 87
- [9] Nowik I, Felner I and Seh M 1983 Proc. Int. Conf. on Magnetism of Rare Earths and Actinides (Bucharest) ed E Burzo and M Rogalski p 112
- [10] Pinto H, Melamud M, Kuznietz M and Shaked H 1985 Phys. Rev. B 31 508
- [11] Rodriquez-Carvajal J 1993 Physica B 192 55
- [12] Sears V G 1992 Neutron News 3 26
- [13] Freeman A J and Declaux J P 1979 J. Magn. Magn. Mater. 12 11
- [14] Ban Z and Sikirica M 1964 Acta Crystallogr. 18 594
- [15] Bara J J, Hrynkiewicz H U, Miłoś A and Szytuła A 1990 J. Less-Common Met. 161 185
- [16] Noakes D R, Umarji A M and Shenoy G K 1983 J. Magn. Magn. Mater. 39 309
- [17] Greedan J E and Rao V U S 1973 J. Solid State Chem. 6 387 Greedan J E and Rao V U S 1973 Solid State Chem. 8 368